
ModelWriter: Text and Model-Synchronized

Document Engineering Platform

Ferhat Erata∗§, Claire Gardent†, Bikash Gyawali†, Anastasia Shimorina†, Yvan Lussaud‖, Bedir Tekinerdogan∗,

Geylani Kardas¶∗∗, and Anne Monceaux‡

∗Information Technology Group, Wageningen University and Research Centre, The Netherlands
†CNRS, LORIA, UMR 7503 Vandoeuvre-les-Nancy, F-54500, Nancy, France
‡System Engineering Platforms, Airbus Group Innovations, Toulouse, France

§UNIT Information Technologies R&D Ltd., Izmir, Turkey
¶Ege University, International Computer Institute, Izmir, Turkey

∗∗KoçSistem Information and Communication Services Inc. Istanbul, Turkey
‖OBEO, Nantes, France

Abstract—The ModelWriter platform provides a generic frame-
work for automated traceability analysis. In this paper, we
demonstrate how this framework can be used to trace the
consistency and completeness of technical documents that consist
of a set of System Installation Design Principles used by Airbus to
ensure the correctness of aircraft system installation. We show in
particular, how the platform allows the integration of two types of
reasoning: reasoning about the meaning of text using semantic
parsing and description logic theorem proving; and reasoning
about document structure using first-order relational logic and
finite model finding for traceability analysis.

https://itea3.org/project/modelwriter.html

I. INTRODUCTION

Due to the complexity of software systems that command,

control, and monitor safety-critical functions in airborne sys-

tems and the necessity of the compliance with the DO-

178C [1] standard, there is an increased need for sophisticated

and highly automated tools for the analysis of the tracing

among software artifacts (e.g., requirements, architecture mod-

els, source codes and test cases) to keep them synchronized

and consistent during the development process. In this context,

traceability [2] not only establishes and maintains consistency

between these artifacts but also ensures that each requirement

is tested, that each line of source code has a purpose for the

fulfillment of a requirement, and so forth.

The implementation of traceability is highly contextual as

the certification artifacts produced or used along the process

differ depending on the product or the organization [3]. For

that reason, the ModelWriter platform provides the means for

users to specify which artifacts they want to precisely identify

and monitor and what meaning they want to assign to the

traces between these artifacts.

The considered artifacts represented in our context by trace

locations might be of different levels of granularity, ranging

from a complete document or model to fragments of text or

code. Focusing on documents and text, both the structure and

the content might be used to reason about traceability.

To this end, the ModelWriter platform provides a generic

traceability analysis applicable to text and model artifacts to

synchronize them. Trace locations can be fragments of text,

elements of an architectural model, and parts of program

codes. Traces are relations between trace locations. The Mod-

elWriter platform allows axiomatization of these relations and

reasoning about them, i.e. supporting traceability analysis for

different types of artifacts.

In this paper, we focus on demonstrating the features of

the ModelWriter platform for traceability analysis applied to

technical documentation. A particular challenge in this use

case is to take into account the meaning of natural language.

We integrate techniques from Natural Language Processing

(NLP) and Automated Reasoning to reason both about the

meaning and about the structure of text. We use techniques

from semantic parsing to assign formal meaning representa-

tions to NL text. We then use techniques from theorem proving

and model building to infer traceability relations between

text fragments (here System Installation Design Principles),

to check consistency and to ensure completeness.

II. THE AIRBUS SIDP USECASE

We illustrate the workings of the ModelWriter platform

based on a set of System Installation Design Principles (SIDP)

used by Airbus to ensure the correctness of aircraft design. An

SIDP rule is an installation requirement specifying properties

which must be fulfilled for the system to be well-formed. In

this usecase, SIDPs are trace locations and we define five

types of trace links between these trace locations, namely

CONTAINS, REFINES, CONFLICTS, EQUALS, and REQUIRES.

In the following, we informally give the meaning of the trace-

types adopted from the work of Goknil et. al. [4]. A formal

semantics is provided in Section III-C.

Rule r1 contains Rule r2 . . . rn if r2 . . . rn are parts of the

whole r1 (part-whole hierarchy). The contained rule is a sub-

rule of the containing rule. Rule r1 refines another Rule r2 if

r1 is derived from r2 by adding more details to its properties.

The refined rule can be seen as an abstraction of the detailed

rules. In Fig. 1 contains and refines traces are illustrated. Each

box represents a property of the corresponding rule.

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Tool Demonstrations

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

907

mailto:ferhat@computer.org
mailto:claire.gardent@loria.fr
mailto:bikash.gyawali@loria.fr
mailto:anastasia.shimorina@loria.fr
mailto:yvan.lussaud@obeo.fr
mailto:bedir.tekinerdogan@wur.nl
mailto:geylani.kardas@ege.edu.tr
mailto:anne.monceaux@airbus.com
https://itea3.org/project/modelwriter.html


r1

r2

r3

con
tai

ns

contains

r4 r5
refines

Fig. 1. r1 contains r2 and r3, r4 refines r5

Rule r1 conflicts with Rule r2 if the fulfillment of r1
excludes the fulfillment of r2 and vice versa. The existence

of a conflict trace indicates an inconsistency between two

rules. Rule r1 equals to Rule r2 if r1 states exactly the same

properties with their constraints with r2 and vice versa. Rule r1
requires Rule r2 if r1 is fulfilled only when r2 is fulfilled. The

required rule can be seen as a pre-condition for the requiring

rule. In the following Fig. 2 conflicts, equals and requires

traces are illustrated.

r1 r2
conflicts

r1 r2
equals

r1 r2
requires

Fig. 2. Illustration of “conflicts, equals and requires”

Given a set of SIDPs, the ModelWriter platform can be

used to check completeness and consistency as follows. First,

the SIDPs are parsed and assigned Description Logic (DL)

formulae representing their meaning (cf. Section III-A). Sec-

ond, traces are either manually specified by the end user or

inferred using semantic parsing and DL theorem proving (cf.

Section III-B). Third, new trace links can be inferred from

existing ones using Relational Logic (RL) (cf. Section III-C)

and Model Finding (cf. Section III-D). Importantly, the in-

ference of trace links allows for the detection of missing or

inconsistent SIDPs.

Table I illustrates this process. Given the SIDPs r1-r6,

CONFLICTS and REFINES trace links are first inferred using

semantic parsing and the Hermit theorem prover [5] (DL lines

in the table).

TABLE I
EXAMPLE SIDPS AND INFERENCE OF TRACE LINKS

Nr. Artifact Annotations (Trace-locations)

r1 Bracket shall be used in hydraulic area Alpha
r2 Adhesive bonded bracket shall be used in hydraulic area
r3 Adhesive bonded bracket shall be used in hydraulic area Alpha
r4 Bracket shall be used in hydraulic area
r5 Bracket shall be installed in hydraulic area
r6 Bracket shall be installed in fuel tank

Nr. Inferred Traces Nr. Inferred Traces

DL1 conflicts(r5, r6) RL1 conflicts(r6, r4)
DL2 refines(r3, r2) RL2 requires(r1, r5)
DL3 refines(r2, r4) RL3 conflicts(r6, r1)
DL4 refines(r1, r4) RL4 requires(r2, r5)
DL5 requires(r4, r5) RL5 conflicts(r2, r6)

For example, the DL formulae obtained by parsing sen-

tences r5 and r6 conflict with each other because the un-

derlying ontology to which these axioms are added specifies

that concepts “hydraulic area” and “fuel tank” are disjoint.

Similarly, the axiom obtained for the sentence r2 refines the

axiom obtained for r4 because the ontology specifies that

“Bracket” is a sub concept of “Adhesive bonded bracket”. In

Fig. 3, Table I is represented as a digraph model in which

the nodes represent trace-locations, i.e. SIDP rules listed in

the table, and edges represents traces. A red edge specifically

corresponds to the trace inferred using semantic parsing and

DL theorem proving. The black one is an example trace,

refines(r3, r6) created by the user manually.

r2 r2 r2

r4r1 r5 r3

r6

refines

refin
esre

fi
n
es

requires

re
fi
n
es

c
o
n
f
li
c
ts

con
flicts

r
e
q
u
ir
e
s

c
o
n
f
lic

ts

requires

conflicts

Fig. 3. Inferred Traces (red traces indicate reasoning using DL, blue indicates
reasoning using RL, the black one indicates a manual trace)

Later, additional trace links are inferred using Relational

Model Finding (RL lines in the Table I and dashed blue edges

on Fig. 3). For instance, as part of the trace semantics of

this use case, according to the axiom schema (3) formalized

in Section III-C where a, b and c are artifact elements, if a

refines, requires or contains b, while b conflicts with c, then a

also conflicts with c. In this way, ModelWriter generates CON-

FLICTS traces such that combination of conflicts(r5, r6) and

requires(r4, r5) makes conflicts(r6, r4); on the other hand,

according to axiom schema (1) described in Section III-C, the

combination of refines(r2, r4) and requires(r4, r5) gener-

ates requires(r2, r5) corresponding to the patterns shown in

Fig. 4.

a b

c

a b

c

refines

r
e
q
u
ir
e
s

requires

c
o
n
f
lic

ts

requires

con
flicts

Fig. 4. Inferring “requires" with “refines" and inferring “conflicts"

Finally, in this example, DL-based reasoning process in-

ferred only one CONFLICTS trace using the meaning of the

sentences, i.e. r5 conflicts with r6 whereas the ModelWriter de-

tects three more conflicts traces using the meaning of trace

types by means of RL-based reasoning on top of DL-based

reasoning. As a result, it can be seen that not only r5 and r6
but also r4, r1, and r2 are inconsistent.

908



III. OVERVIEW OF THE APPROACH

We now describe the four main modules making up the

ModelWriter platform. Section III-A introduces the semantic

parser, i.e., the module that converts text to Description Logic

formulae. Section III-B explains how the Hermit reasoner can

be used to detect REFINES, CONFLICTS and EQUALS trace

links between text fragments (here, SIDPs). Section III-C

shows how Alloy formalism [6] can be customized to axioma-

tize trace types and semantics. Finally, Section III-D explains

how the KodKod model finder [7] is used to infer new trace

links between SIDPs to detect the inconsistent SIDPs.

A. Mapping Text to Description Logic Formulae

The semantic parser used in ModelWriter to convert text to

DL formulae is described in details in [8]. In what follows,

we briefly summarize its working and some evaluation results

on a set of 960 SIDPs used for testing.

The ModelWriter semantic processing framework combines

an automatically derived lexicon, a small hand-written gram-

mar, a parsing algorithm to convert text to DL formulae

and a generation algorithm to convert DL formulae to text.

This framework is modular and robust. It is modular in that,

different lexicons or grammars may be plugged to meet the

requirements of the semantic application being considered. For

instance, the lexicon (which relates words and concepts) could

be built using a concept extraction tool, i.e. a text mining tool

that extracts concepts from text (e.g., [9]). And the grammar

could be replaced by a grammar describing the syntax of other

document styles such as cooking recipes. It is robust in that,

in the presence of unknown words, the parser can skip words

and deliver a connected (partial) parse. Fig. 5 outlines our

approach showing the interaction of various components. The

generation algorithm can be used to automatically synchronize

documents with models (e.g., by generating a text verbalising

the meaning of a DL constraint added to the model). It is

also used to verify the quality of the DL formules derived by

parsing: given a sentence S and the DL formula φ derived for

S by the parser, are the sentences S′ that can be generated

from φ similar to S?

Input
SIDPs

Semantic Parser

Grammar (Manual)
Lexicon (Automatic)

O
W

L
A

xio
m

s

Surface Realiser
Generated

SIDPs

BLEU
Scoring

Full/Partial
Parse

Syntax
Validation

Fig. 5. Parsing and Generation of Airbus SIDPs.

The lexicon maps verbs and noun phrases to grammar rules

and to complex and simple concepts respectively. Fig. 6 shows

an illustrative example with a lexical entry on the left and

the corresponding grammar unit on the right. During genera-

tion/parsing, the semantic literals listed in the lexicon (here,

Use and useArg2inv) are used to instantiate the variables (here,

A2 and Rel) in the semantic schema (here, L0:subset(X,L1)

L2:exists(A2,L3) L3:Rel(Y)). Similarly, the Anchor value

(used) is used to label the terminal node marked with the

anchor sign (⋄) and each coanchor is used to label the terminal

node with corresponding name. Thus, the strings shall and

be will be used to label the terminal nodes V 1 and V 2
respectively.

Semantics:
Rel = Use

A2 = useArg2inv

Tree: nx0V
Anchor: used

Coanchor: V1 → shall/V

Coanchor: V2 → be/V

S

NP↓X VP

V V
L1

L2
V

⋄V 1 ⋄V 2 ⋄

L0:subset(X,L1)

L2:exists(A2,L3)

L3:Rel(Y)

Fig. 6. Example Lexical Entry and Grammar Unit

The grammar provides a declarative specification of how

text relates to meaning (as represented by OWL DL [10]

formulae). We use a Feature-Based Lexicalised Tree Adjoining

Grammar (FB-LTAG) [11] augmented with a unification-based

flat semantics. Fig. 7 shows an example FB-LTAG for the

words “not", “pipes" and “shall be used". An FB-LTAG

tree is a set of initial and auxiliary trees which have been

lexicalised using the lexicon and can be combined using either

substitution or adjunction. Auxiliary trees are trees such as

the tree for “not" which contains a foot node (marked with

*) whose category (here AUX) matches that of the root node.

Initial trees are trees such as that of “pipes" and “shall be used"

whose terminal nodes may be substitution nodes (marked with

↓). Substitution inserts a tree with root category C into a

substitution node of the same category. For instance, the tree

for “pipes" may be substituted in the NPY

↓ node of the “shall

be used" tree. Adjunction inserts an auxiliary tree with foot

node category C into a tree at a node of category C. For

instance, the tree for “not" may be adjoined into the tree for

“shall be used" at the AUX node.

NPL6

Pipes
L6 :Pipe(X)

S

NP↓Y VP

AUX AUX
L1

L2
V

shall be used

L0 :subset(Y,L1 )

L2 :exists(useArg2inv,L3 )

L3 :Use(Z)

AUXL4

ADV AUX∗

L5

not
L4 :not(L5 )

Fig. 7. Example FB-LTAG with Unification-Based Semantics. The variables
decorating the tree nodes (e.g., X) abbreviate feature structures of the form
[idx : X] where X is a unification variable.

The parser and the generator exploit the grammar and

the lexicon to map natural language to OWL DL formulae

(semantic parsing) and OWL DL formulae to natural language

909



(generation) respectively. For instance, given the sentence

“Pipes shall not be used", the parser will first select the

grammar trees associated with “Pipes", “shall be used" and

“not" and then combines these trees using substitution and

adjunction. As shown in Fig. 8, the semantics derived for the

input sentence is then the union of the semantics of these trees

modulo unification. Conversely, given the flat semantics shown

in the figure the generator will generate the sentence “Pipes

shall not be used", by first selecting grammar trees whose

semantics subsumes the input and then combining them using

substitution and operation. The generated sentences are given

by the yield of the derived trees whose root is of category S

(sentence) and whose semantics is exactly the input semantics.

S

NP VP

AUX AUX V

ADV AUX

Pipes shall not be used

L6:Pipe(X) L0 :subset(L6,L4) L4:not(L5)

L5:exists(useArg2inv,L3) L3:Use(Z)

Pipe ⊑ ¬∃useArg2−.(Use)

Fig. 8. Derived Tree. The flat semantics representation produced by the
grammar is equivalent to the Description Logic Formula shown.

While the grammar integrates a so-called flat semantics, as

shown in Fig. 9, there is a direct translation from this semantics

to OWL functional syntax. Further details about Semantic

Parser can be found at:

https://modelwriter.github.io/semanticparser

B. Inferring Traces using DL Theorem Proving

We use Hermit theorem prover to detect inconsistencies,

entailment and equivalence between two SIDPs s1 and s2.

Given the DL formulae φ1 and φ2 associated by the semantic

parsing process to s1 and s2, we determine these relations as

follows: (i) if φ1⊓φ2 is not satisfiable, we infer a CONFLICTS

trace between s1 and s2, (ii) if ¬φ1⊔φ2 is satisfiable, we infer

a REQUIRES trace between s1 and s2, and (iii) if φ1 ≡ φ2 is

satisfiable, we infer an EQUALS trace between s1 and s2.

C. Formal Semantics of Trace-types

Tarski is the module of ModelWriter for automated rea-

soning about traces based on configurable trace semantics,

recently described in [12] and demonstrated in [13]. The tool

provides an enhanced text editor to allow users to define new

trace types in a restricted form of Alloy [6] to express complex

constraints among traces.
In the following, we axiomatize trace semantics based on the

informal definition explained in Section II using First-order
Predicate Logic (FOL) with the signature:

ΣT : {=,∈} ∪ Σ1

T ∪ Σ2

T

Σ1

T : {Artifact, Requirement, Specification}

Σ2

T : {requires, refines, contains, equals, conflicts}

Σ1

T
is the set of unary predicate symbols and Σ2

T
is the set

of binary predicate symbols. For simplicity, we assume that the

universe only consists of the type, Artifact which is partitioned

into disjoint subsets of Requirement and Specification. From

now on, A represents the set of Artifacts. The symbols =
and ∈ are interpreted and represent equality and membership

respectively. In the following, several axiom schemas are listed

to formalize Traceability Theory, that is used in the SIDP case.
Reasoning about REQUIRES traces is stated as follows:

⊢ ∀a, b, c ∈ A | (a, b) ∈ � ∧ (b, c) ∈ △ → (a, c) ∈ △ (1)

⊢ ∀a, b, c ∈ A | (a, b) ∈ △ ∧ (b, c) ∈ � → (a, c) ∈ △ (2)

where � ∈ {requires, refines, contains} and △ := requires

The following axiom schema is being used for generating
CONFLICTS traces.

⊢ ∀a, b, c ∈ A | (a, b) ∈ � ∧ (b, c) ∈ △ → (a, c) ∈ △ (3)

⊢ ∀a, b ∈ A | (a, b) ∈ △ → (b, a) ∈ △ (4)

where � ∈ {requires, refines, contains} and △ := conflicts

Reasoning about EQUALS traces:

⊢ ∀a, b, c ∈ A | (a, b) ∈ equals∧ (b, c) ∈ � → (a, c) ∈ � (5)

⊢ ∀a, b, c ∈ A | (a, b) ∈ equals∧ (c, b) ∈ � → (c, a) ∈ � (6)

⊢ ∀a ∈ A | (a, a) ∈ equals (7)

where � ∈ {contains, requires, refines, conflicts}

In the following axiom schema, transitivity (8) is used
for reasoning new traces, whereas anti-symmetry (9) and
irreflexivity (10) are used to check consistency.

⊢ ∀a, b, c ∈ A | (a, b) ∈ � ∧ (b, c) ∈ � → (a, c) ∈ �, (8)

⊢ ∀a, b ∈ A | (a, b) ∈ � ∧ (b, a) ∈ � → a = b, (9)

⊢ ∀a ∈ A | (a, a) /∈ �, (10)

where � ∈ {contains, requires, refines}

CONTAINS traces is left-unique (injective relation) in some
scenarios that induces an inconsistency when transitivity ax-
iom (8) for CONTAINS is instantiated in the specification.

⊢ ∀a, a′, b ∈ A | (a, b) ∈ � ∧ (a′, b) ∈ � → a = a′
(11)

where � := contains

We encode above axioms in First-order Relational Logic

using the Tarski’s text editor to configure the Tarski module.

D. Inferring Trace Links using Model Finding

We employ Kodkod [7], [14], an efficient SAT-based con-

straint solver for FOL with relational algebra and partial

models, for automated trace reasoning using the trace seman-

tics that user provides. Once the user performs reasoning

operations about traces, the result is reported back to the user

by dashed traces as shown in Fig. 10. If there exists different

solutions, the user can traverse them back and forth. He can

also accept the inferred traces, and perform another analysis

operation including inferred traces. Further details about Tarski

can be found at:

https://modelwriter.github.io/Tarski/

910

https://modelwriter.github.io/semanticparser
https://modelwriter.github.io/Tarski/


τ(φ) =



















































ObjectSomeValuesFrom(:R τ(C)) if φ = li : exists(R, lj) lj : C

SubClassOf(τ(C1) τ(C2)) if φ = li : subset(lj , lk) lj : C1 lk : C2

ObjectIntersectionOf(τ(C1) τ(C2)) if φ = li : and(lj , lk) lj : C1 lk : C2

(τ(C1) ⊓ τ(C2)) if φ = li : and(lj , lk) lj : C1 lk : C2

(τ(C1) ⊔ τ(C2)) if φ = li : or(lj , lk) lj : C1 lk : C2

not(τ(C)) if φ = li : not(lj) lj : C

R− if φ = Rinv

C if φ = li : C(x)

Fig. 9. Mapping Flat Semantics to Owl Functional Syntax

Fig. 10. Inferred Relations based on the current snapshot

IV. EVALUATION

We evaluate the Semantic Parsing approach of Model-

Writer on a dataset of 960 SIDPs provided by Airbus which

demonstrates (i) that the approach is robust (97.50% of the

SIDPs can be parsed) and (ii) that DL axioms assigned to full

parses are likely to be correct1. Regarding inference phase,

since we observed that DL-based reasoning is relatively faster

than SAT-based reasoning in the context of SIDPs, we only

focus on the Tarski module to evaluate the performance of

ModelWriter approach. Table II shows the solving results of

three configurations of the formal trace specification running

with Alloy Analyzer [6], KodKod [7] and Z3 [15]. The Minisat

[16] SAT Solver is chosen for both Alloy (alloy4.2-2015-

02-22.jar) and KodKod (Kodkod 2.1) solvers. From Alloy

to SMT solver translation for these cases, we employ the

translation method proposed by El Ghazi et.al. [17] and the

problems are encoded in SMT-LIB [18] syntax which is fed

into Z3 solver. Transitive closure and integer arithmetic are not

used in these use cases to fairly benchmark the results with

the SMT solver. In SMT-LIB, the logic is set for Equality

Logic with Uninterpreted Functions (UF). Evaluation results

1A parse for a sentence S deriving a DL formulae φ for S is likely to be
correct if at least one of the sentences regenerated from φ is highly similar
to the input sentence S.

are obtained on a machine, that runs 64 bit Debian linux

operating system with 8 GB of memory and 2.90GHz Intel

i7-3520M CPU. Solving times are indicated in milliseconds.

The best results are obtained by the direct use of KodKod

API since to find satisfiable models, KodKod allows us to

configure lower and upper bounds for the solution space

employing different pre-processing techniques such as slicing,

incremental upper bounds and unrolling transitivity constraints.

The evaluation shows that our tool is practical and beneficial

in industrial settings to specify trace semantics for automated

trace reasoning. We plan to conduct more case studies to better

evaluate the practical utility and usability of the platform.

TABLE II
COMPARISONS OF SEVERAL USE CASES FOR TRACE INFERRING

Artifacts Traces Inferred Alloy KodKod Z3

#1 123 102 89 67922 25668 40900
#2 56 27 25 4428 84 480
#3 42 103 75 724 1 1460

V. RELATED WORK

Many existing works on semantic parsing describe the task

of obtaining axiomatic representation of natural langauge sen-

tences. However, they suffer from two main limitations: (i) use

of controlled languages such as Attempto Controlled English

[19] (e.g. [20], [21]) and/or (ii) inability to deduce complex

axioms involving logical connectives, role restrictions and

other expressive features of OWL (e.g. [22], [23]), as noted in

[24]. In contrast, we work on human authored real-world text

(Airbus SIDPs) and produce complex OWL axioms involving

the following DL constructs: ⊤ (the most general concept),

disjunction, conjunction, negation, role inverse, universal and

existential restrictions. Moreover, we extended the scope of

our application by deducing traces among the semantic parse

outputs. Such traces were then used as baseline input to

Tarski platform which could infer additional traces propagating

over the whole system.

Similarly, several approaches and tools have been proposed

for automated trace reasoning using the trace semantics [4],

[25]–[31]. These approaches employ a predefined set of trace

types and their corresponding semantics. For instance, Goknil

et al. [4] provide a tool for inferencing and consistency

checking of traces between requirements using a set of trace

types and their formal semantics. Similarly, Egyed and Grün-

bacher [26] propose a trace generation approach. They do

911



not allow the user to introduce new trace types and their

semantics for automated reasoning. In the development of

complex systems, it is required to enable the adoption of

various trace types, and herewith automated reasoning using

their semantics. Tarski module of ModelWriter allows the user

to interactively define new trace types with their semantics to

be used in automated reasoning about traces.

VI. CONCLUSION

We presented an integrated platform for automatically map-

ping natural language text to trace types and performing

further inference on those traces. Starting with the semantic

parser module, we showed how complex axioms could be

derived to represent text coming from real world use cases.

We identified the traces among the parse outputs and fed it

to the Tarski tool. The Tarski tool, in turn, allowed users

to specify configurable trace semantics for various forms of

automated trace reasoning such as inference and consistency

checking. The key characteristics of our tool are (1) automatic

identification of traces existing in text using semantic parsing

(2) allowing user to define new trace types and their semantics

which can be later configured, (3) deducing new traces based

on the traces which the user has already specified, and (4)

identifying traces whose existence causes a contradiction.

ACKNOWLEDGMENT

This work is conducted within ModelWriter project [32]

and partially supported by the Scientific and Technologi-

cal Research Council of Turkey under project #9140014,

#9150181 and Industry and Digital Affairs of France under

contract #142930204. The authors would like to acknowledge

networking support by European Cooperation in Science and

Technology Action IC1404 "Multi-Paradigm Modelling for

Cyber-Physical Systems".

REFERENCES

[1] RTCA and EUROCAE, “DO-178C: Software considerations in airborne
systems and equipment certification,” 2017.

[2] I. C. Society, P. Bourque, and R. E. Fairley, Guide to the Software

Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2014.

[3] S. Maro, A. Anjorin, R. Wohlrab, and J. P. Steghöfer, “Traceability
maintenance: Factors and guidelines,” in 31st IEEE/ACM International

Conference on Automated Software Engineering, 2016, pp. 414–425.
[4] A. Goknil, I. Kurtev, K. van den Berg, and J.-W. Veldhuis, “Semantics

of trace relations in requirements models for consistency checking and
inferencing,” Software and System Modeling, vol. 10, no. 1, pp. 31–54,
2011.

[5] R. Shearer, B. Motik, and I. Horrocks, “Hermit: A highly-efficient owl
reasoner.” in 5th OWL Experienced and Directions Workshop, vol. 432,
2008, p. 91.

[6] D. Jackson, Software Abstractions: Logic, Language, and Analysis. MIT
press, 2012.

[7] E. Torlak, “A constraint solver for software engineering: Finding models
and cores of large relational specifications,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2008.

[8] B. Gyawali, A. Shimorina, C. Gardent, S. Cruz-Lara, and M. Mahfoudh,
“Mapping natural language to description logic,” in The Semantic Web:

14th International Conference, ESWC 2017, 2017, pp. 273–288.
[9] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik,

D. Oberle, C. Schmitz, S. Staab, L. Stojanovic et al., “KAON – towards
a large scale Semantic Web,” in E-Commerce and Web Technologies.
Springer, 2002, pp. 304–313.

[10] D. L. McGuinness, F. Van Harmelen et al., “OWL web ontology
language overview,” W3C recommendation, vol. 10, no. 10, p. 2004,
2004.

[11] C. Gardent and L. Kallmeyer, “Semantic construction in feature-based
TAG,” in Proceedings of EACL. Association for Computational
Linguistics, 2003, pp. 123–130.

[12] F. Erata, M. Challenger, B. Tekinerdogan, A. Monceaux, E. Tüzün, and
G. Kardas, “Tarski: A platform for automated analysis of dynamically
configurable traceability semantics,” in the 32nd ACM SIGAPP Sympo-

sium on Applied Computing (SAC’17), 2017, pp. 1607–1614.
[13] F. Erata, A. Goknil, B. Tekinerdogan, and G. Kardas, “A tool for auto-

mated reasoning about traces based on configurable formal semantics,”
in 11th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE 2017), 2017, pp. 959–963.
[14] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in

the 13th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’07), 2007, pp. 632–647.
[15] L. D. Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’08), 2008, pp. 337–340.
[16] N. Eén and N. Sörensson, “An extensible sat-solver,” in the 6th Interna-

tional Conference on Theory and Applications of Satisfiability Testing

(SAT’03), 2003, pp. 502–518.
[17] A. A. E. Ghazi and M. Taghdiri, “Relational reasoning via smt solving,”

in the 17th International Conference on Formal Methods (FM’11), 2011,
pp. 133–148.

[18] C. Barrett, A. Stump, C. Tinelli et al., “The smt-lib standard: Version
2.0,” in the 8th International Workshop on Satisfiability Modulo Theories,
vol. 13, 2010, p. 14.

[19] K. Kaljurand and N. E. Fuchs, “Verbalizing OWL in Attempto Con-
trolled English,” in OWLED, vol. 258, 2007.

[20] V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva, “User-
friendly ontology authoring using a controlled language,” in Proceedings

of LREC, 2006.
[21] A. Bernstein, E. Kaufmann, A. Göhring, and C. Kiefer, “Querying

ontologies: A controlled english interface for end-users,” in International

Semantic Web Conference. Springer, 2005, pp. 112–126.
[22] P. Buitelaar, P. Cimiano, and B. Magnini, Ontology learning from text:

methods, evaluation and applications. IOS press, 2005, vol. 123.
[23] M. Ruiz-Casado, E. Alfonseca, and P. Castells, “Automatic Extraction

of Semantic Relationships for Wordnet by Means of Pattern Learning
from Wikipedia,” in International Conference on Application of Natural

Language to Information Systems. Springer, 2005, pp. 67–79.
[24] J. Völker, P. Hitzler, and P. Cimiano, “Acquisition of OWL DL ax-

ioms from lexical resources,” in European Semantic Web Conference.
Springer, 2007, pp. 670–685.

[25] N. Aizenbud-Reshef, R. F. Paige, J. Rubin, Y. Shaham-Gafni, and
D. S. Kolovos, “Operational semantics for traceability,” in ECMDA

Traceability Workshop (ECMDA-TW’05), 2005, pp. 8–14.
[26] A. Egyed and P. Grünbacher, “Supporting software understanding with

automated requirements traceability,” International Journal of Software

Engineering and Knowledge Engineering, vol. 15, no. 5, pp. 783–810,
2005.

[27] A. Egyed, “A scenario-driven approach to trace dependency analysis,”
IEEE Transactions on Software Engineering, vol. 29, no. 2, pp. 116–132,
2003.

[28] J. Cleland-Huang, C. K. Chang, and M. J. Christensen, “Event-based
traceability for managing evolutionary change,” IEEE Transactions on

Software Engineering, vol. 29, no. 9, pp. 796–810, 2003.
[29] L. C. Lamb, W. Jirapanthong, and A. Zisman, “Formalizing traceability

relations for product lines,” in the 6th International Workshop on

Traceability in Emerging Forms of Software Engineering (TEFSE’11),
2011, pp. 42–45.

[30] A. Goknil, I. Kurtev, and K. V. D. Berg, “Generation and validation
of traces between requirements and architecture based on formal trace
semantics,” Journal of Systems and Software, vol. 88, pp. 112–137, 2014.

[31] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes, “Engineer-
ing a dsl for software traceability,” in 1st International Conference on

Software Language Engineering (SLE’08), 2008, pp. 151–167.
[32] F. Erata, “ModelWriter: Text & model synchronized document engineer-

ing platform,” https://itea3.org/project/modelwriter.html, Sep 2014.

912

https://itea3.org/project/modelwriter.html

	I Introduction
	II The Airbus SIDP Usecase
	III Overview of the Approach
	III-A Mapping Text to Description Logic Formulae
	III-B Inferring Traces using DL Theorem Proving
	III-C Formal Semantics of Trace-types
	III-D Inferring Trace Links using Model Finding

	IV Evaluation
	V Related Work
	VI Conclusion
	References

